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Abstract
Inspired by factorized scattering from δ-type impurities in (1 + 1)-dimensional
spacetime, we propose and analyse a generalization of the Zamolodchikov–
Faddeev algebra. Distinguished elements of the new algebra, called reflection
and transmission generators, encode the particle–impurity interactions. We
describe in detail the underlying algebraic structure. The relative Fock
representations are explicitly constructed and a general factorized scattering
theory is developed in this framework.

PACS numbers: 11.10.Jj, 11.10.Kk, 02.30.Ik, 02.30.Zz

1. Introduction

Much progress has been made in the last two decades in understanding the physical properties
and the mathematical structure of integrable quantum systems in 1 + 1 dimensions. The idea
of factorized scattering, which can be traced back to the pioneering work of Yang [1], plays a
central role in most of the significant developments in this field. It has been recognized later,
that the algebraic structure in the basis of factorized scattering theory is the Zamolodchikov–
Faddeev (ZF) algebra [2–4]. This algebra represents a powerful tool for deriving not only
S-matrix amplitudes, but also form factors of local operators [5, 6].

Integrable models with boundaries [7–14] or defects [15–21] have recently also been the
subject of intense study. Since factorized scattering turns out to be fundamental in this context
as well, the natural problem that arises is to find the counterpart of the ZF algebra, which works
in the presence of reflecting and transmitting impurities. The main goal of the present paper
is to introduce such an algebra, called in what follows reflection–transmission (RT) algebra.
Our strategy is to generalize the approach to integrable systems on the half-line developed in
[14]. Besides the particle creation and annihilation operators, the RT algebra also involves
reflection and transmission (defect) generators. In the Fock representation, the latter acquire
4 On leave of absence from LAPTH.
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non-vanishing vacuum expectation values, defined in terms of the observable reflection and
transmission amplitudes of a single particle interacting with the defect. Together with the two-
body bulk scattering matrix, these amplitudes form the physical input. The structure of the RT
algebra is inspired by some exactly solvable integrable models with δ-type impurities. Apart
from providing a useful test for the general set-up, these systems find concrete applications
[17, 20] in conductance problems.

The paper is organized as follows. In the next section we focus on quantum inverse
scattering with δ-impurities. The general concept of RT algebra is introduced in section 3.
After a brief description of the basic features of these algebras, we construct the relative Fock
representations. Section 4 is devoted to scattering with impurities. We first establish the
unitarity and factorization constraints. Using the Fock representation of a suitable RT algebra,
we define afterwards the ‘incoming’ and ‘outgoing’ states and construct the total scattering
operator. The last section contains our conclusions. We discuss there some universal features
of the RT algebras and their relevance to inverse scattering and other related topics.

2. Origin of reflection–transmission algebras

It is instructive to start the discussion with two examples, showing how the RT algebras emerge
from the study of quantum impurity problems. We begin with the n-particle Hamiltonian

H(n) =
n∑

i=1

−1

2
∂2
xi

+ ηδ(xi) η ∈ R (2.1)

which describes a system of n non-relativistic bosonic particles (of unit mass) on R, which
interact with a δ-type impurity localized at the origin, but not among themselves. This model
is well known to be exactly solvable. It is sufficient to investigate the spectral problem
associated with the one-particle Hamiltonian H(1), defined on a suitable (see, e.g., [22])
domain Dη ⊂ L2(R, dx) of continuous functions on R, which are twice differentiable in
R\{0} and satisfy

lim
x↓0

[(∂xψ)(x) − (∂xψ)(−x)] = 2ηψ(0). (2.2)

H(1) is self-adjoint on Dη. A set of orthogonal (generalized) eigenstates
{
ψ±

k (x) : k ∈ R
}
,

verifying (2.2), is

ψ±
k (x) = θ(∓k){θ(∓x)T (∓k) eikx + θ(±x)[eikx + R(∓k) e−ikx]} (2.3)

where θ denotes the standard Heaviside function and

T (k) = k

k + iη
R(k) = −iη

k + iη
. (2.4)

The family
{
ψ̄±

−k(x) : k ∈ R
}
, where the bar stands for complex conjugation, is also

orthonormal. The systems
{
ψ±

k (x) : k ∈ R
}

and
{
ψ̄±

−k(x) : k ∈ R
}

represent physically
scattering states and, for η � 0, are separately complete in L2(R, dx). When η < 0, there is
in addition one bound state

ψb(x) = θ(−η)
√

|η|[θ(x) eηx + θ(−x) e−ηx] (2.5)

which is orthogonal to
{
ψ±

k (x) : k ∈ R
}

and
{
ψ̄±

−k(x) : k ∈ R
}
. The energy of ψb is

E = −η2/2.
Particle collision and production processes are absent from this simple model.

Nevertheless, the reflection and transmission from the impurity give rise to a non-trivial
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scattering operator, which preserves the particle number and can be described as follows.
Using the weak limits

lim
x→±∞

e±ikx

k + iε
= 0 ε > 0 (2.6)

one can verify that

lim
x→±∞

[
ψ±

k (x) − eikx
] = 0. (2.7)

Therefore, one can interpret ψ±
k (x) asymptotically as incoming waves, travelling in R± with

momentum k �= 0 towards the impurity. Accordingly, we take the vectors

|k〉in = ψ+
k (x) + ψ−

k (x) (2.8)

to be the basis of one-particle ‘in’ states. Analogous considerations lead us to choose the
following basis of one-particle ‘out’ states:

|k〉out = ψ̄+
−k(x) + ψ̄−

−k(x). (2.9)

The one-particle scattering operator is defined at this point by

S(1)|k〉out = |k〉in. (2.10)

By construction, S(1) is a unitary operator on L2(R, dx) for η � 0. In the range η < 0, S(1) is
defined and unitary on the orthogonal complement to the bound state (2.5) in L2(R, dx). The
one-particle transition amplitude reads
out〈p|k〉in = out〈p|S(1)|k〉out = [θ(p)T (p) + θ(−p)T (−p)]2πδ(p − k)

+ [θ(p)R(p) + θ(−p)R(−p)]2πδ(p + k) (2.11)

which clarifies the physical meaning of T and R, given by equation (2.4). They represent
the transmission and reflection amplitudes and admit a meromorphic continuation in k to the
whole complex plane C. The pole k = −iη confirms the presence of the bound state ψb for
η < 0 and indicates the existence of a resonance state for η > 0.

The n-particle amplitude, with initial and final configurations satisfying k1 < · · · < kn

and p1 > · · · > pn respectively, can be expressed in terms of (2.11) as follows:

out〈p1, . . . , pn|k1, . . . , kn〉in = out〈p1, . . . , pn|S(n)|k1, . . . , kn〉out =
n∏

i=1

out〈pi |ki〉in. (2.12)

Equation (2.12) concludes our brief summary of the standard and well-known analytic
treatment of the integrable system defined by (2.1).

A natural question one may ask at this point concerns the existence of an algebraic
framework for dealing with the above system for η �= 0, similar to the familiar canonical
commutation approach, which works in the case η = 0. The answer to this question
turns out to be affirmative and we now turn to the description of the relevant algebraic
structure. Following our previous work [21], we introduce the associative algebra CB with
identity element 1, generated by {a∗ξ (k), aξ (k) : ξ = ±, k ∈ R} obeying the bosonic-type
commutation relations,

aξ1(k1)aξ2(k2) − aξ2(k2)aξ1(k1) = 0 (2.13)

a∗ξ1(k1)a
∗ξ2(k2) − a∗ξ2(k2)a

∗ξ1(k1) = 0 (2.14)

aξ1(k1)a
∗ξ2(k2) − a∗ξ2(k2)aξ1(k1) = [

δ
ξ2
ξ1

+ T ξ2
ξ1

(k1)
]
2πδ(k1 − k2)1 + Rξ2

ξ1
(k1)2πδ(k1 + k2)1

(2.15)
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where

T (k) =
(

0 T (k)

T̄ (k) 0

)
R(k) =

(
R(k) 0

0 R̄(k)

)
. (2.16)

The right-hand side of equation (2.15) captures the presence of the impurity. The term
proportional to δ(k1 + k2) reflects in particular the breaking of translation and Galilean
invariance due to the impurity. We shall see in the next section that CB is a particular RT
algebra. For the moment we focus on the Fock representation FR,T (CB) of CB , referring for
the explicit construction to section 3.2. An essential feature of FR,T (CB) is that the operators
{a∗ξ (k), aξ (k)} in this representation satisfy

aξ (k) = T η

ξ (k)aη(k) + Rη

ξ (k)aη(−k) (2.17)

a∗ξ (k) = a∗η(k)T ξ
η (k) + a∗η(−k)Rξ

η(−k). (2.18)

Hereafter the summation over repeated upper and lower indices is understood. Relations
(2.17), (2.18) originate from the reflection–transmission automorphism characterizing any
RT algebra and established in section 3. In the physical context these relations encode the
interaction with the impurity.

The vacuum state 	 ∈ FR,T (CB) obeys as usual aξ (k)	 = 0. We denote by (·, ·) the
scalar product in FR,T (CB) and consider the vacuum expectation value

(a∗η1(p1) . . . a∗ηn(pn)	, a∗ξ1(k1) . . . a∗ξn (kn)	) (2.19)

with

k1 < · · · < kn ξi = −ε(ki) p1 > · · · > pn ηi = ε(pi) (2.20)

ε being the sign function. By means of equations (2.13)–(2.15) it is easily verified that (2.19)
precisely reproduce the amplitudes (2.12) for any n. Therefore, CB provides a purely algebraic
framework for constructing the scattering operator. The formalism actually applies to any
observable of the system, introducing in addition to CB the creation and annihilation operators
{b∗, b} for the bound state (2.5), which commute with {a∗ξ (k), aξ (k)} and satisfy

[b, b] = [b∗, b∗] = 0 [b, b∗] = 1. (2.21)

For the Hamiltonian one finds, for instance,

H = 1

2

∫ +∞

−∞

dk

2π
k2a∗ξ (k)aξ (k) − θ(−η)

η2

2
b∗b. (2.22)

The restriction of H to the n-particle subspace of the total Hilbert space (including the bound
state) is the algebraic counterpart of the Hamiltonian (2.1) we started with.

At this stage we have enough background to turn to quantum field theory with δ-type
impurities [15, 20]. Our goal will be to demonstrate that the algebra CB can be successfully
applied there as well. As an example we consider the model

S[ϕ] = 1

2

∫ +∞

−∞
dt

∫ +∞

−∞
dx[(∂tϕ)2(t, x) − (∂xϕ)2(t, x) − m2ϕ2(t, x) − 2ηδ(x)ϕ2(t, x)]

(2.23)

with m � 0 and η ∈ R. The action (2.23) defines a standard external field problem with
δ-potential. The corresponding equation of motion is[

∂2
t − ∂2

x + m2 + 2ηδ(x)
]
ϕ(t, x) = 0 (2.24)

and our problem will now be to quantize (2.24) with the standard initial conditions:

[ϕ(0, x1), ϕ(0, x2)] = 0 [(∂tϕ)(0, x1), ϕ(0, x2)] = −iδ(x1 − x2). (2.25)
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The solution of this problem requires study of the operator

K ≡ −∂2
x + m2 + 2ηδ(x). (2.26)

We already know that K is self-adjoint on Dη. In order to avoid imaginary energies, we demand
K to be non-negative, which implies

−m � η. (2.27)

Now, the solution of equations (2.24) and (2.25) is unique and can be expressed in terms of
the generators {a∗ξ (k), aξ (k)} and {b∗, b}. One finds

ϕ(t, x) = ϕ+(t, x) + ϕ−(t, x) + ϕb(t, x) (2.28)

where

ϕ±(t, x) =
∫ +∞

−∞

dk

2π
√

2ω(k)

[
a∗±(k)ψ̄±

k (x) eiω(k)t + a±(k)ψ±
k (x) e−iω(k)t

]
(2.29)

ϕb(t, x) = 1√
2ω(iη)

[b∗ eitω(iη) + b e−itω(iη)]ψb(x) (2.30)

with ω(k) =
√

k2 + m2.
Using equations (2.15) and (2.28)–(2.30), one easily derives the two-point vacuum

expectation value

w(2)(t1, x1, t2, x2) = (ϕ(t1, x1)	, ϕ(t2, x2)	)

=
∫ +∞

−∞

dk

4πω(k)
e−iω(k)t12{θ(x1)θ(−x2)T (k) eikx12 + θ(−x1)θ(x2)T̄ (k) eikx12

+ θ(x1)θ(x2)[e
ikx12 + R(k) eikx̃12 ] + θ(−x1)θ(−x2)[e

ikx12 + R̄(k) eikx̃12 ]}
+

1

2ω(iη)
e−it12ω(iη)ψb(x1)ψb(x2) (2.31)

where t12 = t1 − t2, x12 = x1 − x2 and x̃12 = x1 + x2. The last term in (2.31) represents the
contribution of the bound state and vanishes for η � 0. The field ϕ has a relativistic dispersion
relation ω(k)2 = k2 + m2, but nevertheless Lorentz invariance is manifestly broken in (2.31).

The function (2.31) fully determines the theory. In fact w(2n+1) = 0, whereas w(2n) can
be derived from w(2) by means of the well-known recursion relation

w(2n)(t1, x1, . . . , t2n, x2n)

=
2n−1∑
i=1

w(2)(ti , xi, t2n, x2n)w
(2n−2)(t1, x1, . . . , t̂i , x̂i , . . . , t2n−1, x2n−1) (2.32)

the hat indicating that the corresponding argument must be omitted.
Having at our disposal all correlation functions, we can derive the scattering operator of

the theory. The particles of our model do not interact directly, but interact with the external
δ-function field, modelling the impurity. We will now show that the associated scattering matrix
is fully determined by the algebra CB . Equation (2.29) therefore represents a true quantum
inverse scattering transform, allowing a reconstruction of the fields ϕ± from {a∗ξ (k), aξ (k)}.
Let us concentrate first on the case η � 0, commenting at the end on the range −m � η < 0. In
developing the scattering theory one can use the Haag–Ruelle approach [23] with some minor
modifications [24], which reflect the absence of translation invariance. The novel feature, with
respect to the quantum mechanical example discussed above, is that in quantum field theory
we need smearing with special wave packets for the free Klein–Gordon equation, which keep
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trace of the position x = 0 of the impurity. Such wave packets can be introduced as follows.
Let D(R) be the space of smooth test functions with compact support. Then

f t (x) =
∫ +∞

−∞

dk

2π
√

2ω(k)
f (k) eikx−iω(k)t f ∈ D(R) (2.33)

is a smooth solution of the Klein–Gordon equation of mass m. We will say that f1 ∈ D(R)

precedes f2 ∈ D(R) and write f1 ≺ f2 if and only if supp(f1) ∩ supp(f2) = 0/ and
k1 < k2 for all k1 ∈ supp(f1) and all k2 ∈ supp(f2). We now introduce the two sets
{gi(k) ∈ D(R) : i = 1, . . . , m} and {hj (k) ∈ D(R) : j = 1, . . . , n}, which satisfy the
non-overlapping conditions

g1 ≺ · · · ≺ gm hn ≺ · · · ≺ h1

0 �∈ supp gi 0 �∈ supp hj .
(2.34)

Setting now

ξi =
{

+ supp gi ⊂ R−
− supp gi ⊂ R+

ηj =
{

+ supp hj ⊂ R+

− supp hj ⊂ R−
(2.35)

we define

gt
ξi
(x) = θ(ξix)gt

i (x) ht
ηj

(x) = θ(ηjx)ht
j (x). (2.36)

By construction, gt
ξi
(x) represent wave packets in Rξi

which move towards the impurity in
x = 0. On the other hand, ht

ηj
(x) are wave packets in Rηj

, which travel away from the impurity
in the direction x → ηj∞. Therefore one expects that the smeared operators

ϕ
(
t, gt

ξi

) = i
∫ +∞

−∞
dx

[(
∂tg

t
ξi

)
(x)ϕ(t, x) − gt

ξi
(x)(∂tϕ)(t, x)

]
(2.37)

ϕ
(
t, ht

ηj

) = i
∫ +∞

−∞
dx

[(
∂th

t
ηj

)
(x)ϕ(t, x) − ht

ηj
(x)(∂tϕ)(t, x)

]
(2.38)

generate asymptotic ‘in’ and ‘out’ states respectively. This is indeed the case because of the
existence of the following strong limits in the Fock space FR,T (CB),

lim
t→−∞ ϕ

(
t, gt

ξ1

) · · · ϕ(
t, gt

ξm

)
	 = a∗ξ1(g1) · · · a∗ξm(gm)	 ≡ |g1, . . . , gm〉in (2.39)

lim
t→+∞ ϕ

(
t, ht

η1

) · · ·ϕ(
t, ht

ηn

)
	 = a∗η1(h1) · · · a∗ηn(hn)	 ≡ |h1, . . . , hn〉out (2.40)

where

a∗ζ (f ) =
∫ +∞

−∞

dk

2π
f (k)a∗ζ (k). (2.41)

Let us sketch the proof of (2.39), for example. Using the non-overlapping conditions (2.34),
the commutation relations (2.13)–(2.15) and the constraints (2.17), (2.18), one first derives the
identity

ϕ
(
t, gt

ξ1

) · · ·ϕ(
t, gt

ξm

)
	 = a∗ξ1

(
g̃t

ξ1

) · · · a∗ξm
(
g̃t

ξm

)
	 (2.42)

where

g̃t
ξi
(p) =

∫ ∞

−∞
dx θ(ξix)

∫ ∞

−∞

dk

2π

ω(k) + ω(p)

2
√

ω(k)ω(p)
gi(k) exp(i[ω(p) − ω(k)]t − ix(p − k)).

(2.43)
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Therefore, equation (2.39) is equivalent to

lim
t→−∞

∥∥a∗ξ1
(
g̃t

ξ1

) · · · a∗ξm
(
g̃t

ξm

)
	 − a∗ξ1(g1) · · · a∗ξm(gm)	

∥∥ = 0 (2.44)

‖·‖ being the L2-norm. For proving (2.44) one uses the continuity of a∗ζ (f ) in f (see the
estimate (3.61) below) and

lim
t→−∞

∥∥g̃t
ξi

− gi

∥∥ = 0 ∀i = 1, . . . , m. (2.45)

Finally, (2.45) is a consequence of the weak limits (2.6), x being replaced by t. This concludes
the argument.

Summarizing, the finite linear combinations of the vectors

{|g1, . . . , gm〉in : g1 ≺ · · · ≺ gm,m = 1, 2, . . .} (2.46)

{|h1, . . . , hn〉out : hn ≺ · · · ≺ h1, n = 1, 2, . . .} (2.47)

generate, after completion with respect to the scalar product in the Fock space FR,T (CB), the
asymptotic spaces Hin and Hout. It turns out that asymptotic completeness Hout = FR,T (CB) =
Hin holds for η � 0. The transition amplitudes read

out〈h1, . . . , hn|g1, . . . , gm〉in = δmn

n∏
i=1

∫ +∞

−∞

dpi

2π

dki

2π
h̄i(pi)

out〈pi |ki〉ingi(ki) (2.48)

where out〈p|k〉in is given by (2.11). These results can be generalized to the case −m < η < 0,
except for the property of asymptotic completeness, which is violated by the bound state
present in this range.

It is worth mentioning that the above framework applies with straightforward
modifications to fermionic systems as well. The relevant algebra CF is obtained in this
case simply by replacing the commutators on the right-hand sides of equations (2.13)–(2.15)
with anticommutators.

It is evident from the above considerations that CB is a universal and powerful tool for
handling δ-type impurities, both in quantum mechanics and quantum field theory. One can
view CB (CF ) as a central extension of the algebra of canonical commutation (anticommutation)
relations. A direct generalization, emerging at this point, is to substitute T (k)1 and R(k)1
in equation (2.15) with new generators t (k) and r(k), which are no longer central elements.
Moreover, in the spirit of the ZF algebra, it is possible to replace the bosonic (fermionic)
exchange factor between {a∗ξ (k), aξ (k)} with a more general one. In this way one naturally
arrives at the general concept of RT algebra, described in the next section.

3. Reflection–transmission algebras

3.1. Definition and general properties

Inspired by the above treatment of δ-impurities, we introduce an associative algebra with
identity element 1 and two types of generators, {aα(χ), a∗α(χ)} and

{
rβ
α (χ), tβα (χ)

}
, called

bulk and defect (reflection and transmission) generators, respectively. We refer to χ ∈ R as a
spectral parameter. In the context of inverse scattering χ parametrizes the particle dispersion
relation (see equations (4.1) below). To be able to deal with systems with internal degrees of
freedom, we adopt double indices α = (ξ, i). The component ξ = ± indicates the half-line
R± where the particle is created or annihilated, whereas i = 1, . . . , N parametrizes the internal
(‘isotopic’) degrees of freedom. The generators

{
aα(χ), a∗α(χ), rβ

α (χ), tβα (χ)
}

are subject to
the following constraints:
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• Bulk exchange relations

aα1(χ1)aα2(χ2) − Sβ1β2
α2α1

(χ2, χ1)aβ2(χ2)aβ1(χ1) = 0 (3.1)

a∗α1(χ1)a
∗α2(χ2) − a∗β2(χ2)a

∗β1(χ1)Sα1α2
β2β1

(χ2, χ1) = 0 (3.2)

aα1(χ1)a
∗α2(χ2) − a∗β2(χ2)Sα2β1

α1β2
(χ1, χ2)aβ1(χ1)

= 2πδ(χ1 − χ2)
[
δα2
α1

1 + tβ2
α1

(χ1)
]

+ 2πδ(χ1 + χ2)r
α2
α1

(χ1). (3.3)

• Defect exchange relations

Sγ2γ1
α1α2

(χ1, χ2)r
δ1
γ1

(χ1)Sβ1δ2
γ2δ1

(χ2,−χ1)r
β2
δ2

(χ2)

= rγ2
α2

(χ2)Sδ2δ1
α1γ2

(χ1,−χ2)r
γ1
δ1

(χ1)Sβ1β2
δ2γ1

(−χ2,−χ1) (3.4)

Sγ2γ1
α1α2

(χ1, χ2)t
δ1
γ1

(χ1)Sβ1δ2
γ2δ1

(χ2, χ1)t
β2
δ2

(χ2)

= tγ2
α2

(χ2)Sδ2δ1
α1γ2

(χ1, χ2)t
γ1
δ1

(χ1)Sβ1β2
δ2γ1

(χ2, χ1) (3.5)

Sγ2γ1
α1α2

(χ1, χ2)t
δ1
γ1

(χ1)Sβ1δ2
γ2δ1

(χ2, χ1)r
β2
δ2

(χ2)

= rγ2
α2

(χ2)Sδ2δ1
α1γ2

(χ1,−χ2)t
γ1
δ1

(χ1)Sβ1β2
δ2γ1

(−χ2, χ1). (3.6)

• Mixed exchange relations

aα1(χ1)r
β2
α2

(χ2) = Sγ1γ2
α2α1

(χ2, χ1)r
δ2
γ2

(χ2)Sβ2δ1
γ1δ2

(χ1,−χ2)aδ1(χ1) (3.7)

rβ1
α1

(χ1)a
∗α2(χ2) = a∗δ2(χ2)Sγ2δ1

α1δ2
(χ1, χ2)r

γ1
δ1

(χ1)Sβ1α2
γ2γ1

(χ2,−χ1) (3.8)

aα1(χ1)t
β2
α2

(χ2) = Sγ1γ2
α2α1

(χ2, χ1)t
δ2
γ2

(χ2)Sβ2δ1
γ1δ2

(χ1, χ2)aδ1(χ1) (3.9)

tβ1
α1

(χ1)a
∗α2(χ2) = a∗δ2(χ2)Sγ2δ1

α1δ2
(χ1, χ2)t

γ1
δ1

(χ1)Sβ1α2
γ2γ1

(χ2, χ1). (3.10)

The exchange factor S is required to satisfy some compatibility conditions, which read as
follows, in conventional tensor notation:

S12(χ1, χ2)S12(χ2, χ1) = I ⊗ I (3.11)

S12(χ1, χ2)S23(χ1, χ3)S12(χ2, χ3) = S23(χ2, χ3)S12(χ1, χ3)S23(χ1, χ2). (3.12)

Equation (3.11) is know as the ‘unitarity’ condition, whereas (3.12) is the celebrated quantum
Yang–Baxter equation in its braid form, R playing the role of spectral set. We emphasize that
S depends in general on χ1 and χ2 separately, which allows to treat both systems with exact as
well as broken Lorentz (Galilean) invariance [25]. More details about the physical meaning
of this generalization are given below in section 4 after equation (4.53).

Recapitulating, with any solution S of (3.11), (3.12) we associate an associative algebra
CS , whose generators

{
aα(χ), a∗α(χ), rβ

α (χ), tβα (χ)
}

satisfy the constraints (3.1)–(3.10). The
bulk exchange relations (3.1)–(3.3) are similar to those of the ZF algebra, but for the presence
of the defect generators on the right-hand side of (3.3). The exchange properties of the latter are
described by equations (3.4)–(3.6). Equation (3.4) looks similar to the boundary Yang–Baxter
equation [7], the difference being that in general the elements

{
rβ
α (χ)

}
do not commute and,

consequently, their position in (3.4) is essential. Note that
{
rβ
α (χ), tβα (χ)

}
close a subalgebra

of CS , which generalizes the Sklyanin algebra [9] for the pure reflection case
(
tβα (χ) = 0

)
.
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The mixed relations (3.7)–(3.10) complete the list, fixing the exchange properties between
bulk and defect generators.

Two particular cases of CS were previously investigated. Setting tβα (χ) = 0 one gets the
boundary algebra introduced in [14] for handling integrable systems on the half-line R+. For
rβ
α (χ) = tβα (χ) = 0 one obtains instead the ZF algebra, which applies to the same systems, but

on the whole line R. In this respect CS emerges as a unifying algebraic structure for quantum
field inverse scattering in 1 + 1 dimensions, which works also in the presence of impurities.
This expectation is widely confirmed by the results reported in section 4.

In this paper we focus on RT algebras. An RT algebra is a CS-algebra whose defect
generators satisfy in addition

tβα1
(χ)t

α2
β (χ) + rβ

α1
(χ)r

α2
β (−χ) = δα2

α1
(3.13)

tβα1
(χ)r

α2
β (χ) + rβ

α1
(χ)t

α2
β (−χ) = 0. (3.14)

A characteristic feature of any RT algebra is a peculiar automorphism, which implements in
algebraic terms the physical concepts of transmission and reflection and which is established
a few lines below.

For constructing the Fock representation of CS , one needs an involution. The most natural
one is obtained by extending the mapping

I : a∗α(χ) �→ aα(χ) I : aα(χ) �→ a∗α(χ) (3.15)

I : rβ
α (χ) �→ rα

β (−χ) I : tβα (χ) �→ tαβ (χ) (3.16)

as an antilinear antihomomorphism on CS . In fact, it is not difficult to check that I leaves
(3.1)–(3.13) invariant, provided that

S†
12(χ1, χ2) = S12(χ2, χ1) (3.17)

where the dagger stands for the Hermitian conjugation. Condition (3.17), known [2] as
Hermitian analyticity of S, is assumed in what follows.

Let us finally consider the mapping

� : aα(χ) �→ tβα (χ)aβ(χ) + rβ
α (χ)aβ(−χ) (3.18)

� : a∗α(χ) �→ a∗β(χ)tαβ (χ) + a∗β(−χ)rα
β (−χ) (3.19)

� : rβ
α (χ) �→ rβ

α (χ) � : tβα (χ) �→ tβα (χ). (3.20)

One can directly verify that � leaves (3.1)–(3.14) invariant and extends therefore to an
automorphism on CS , considered as an algebra with involution I. We refer to � as the reflection–
transmission automorphism and remark that because of (3.13) and (3.14), � is idempotent.
Equations (3.18) and (3.19) are the algebraic counterparts of (2.17) and (2.18). They have a
simple physical interpretation: each particle in the bulk is �-equivalent to a superposition of
a transmitted and a reflected particle.

CS is an infinite algebra and from the above formal definition it is not obvious at all that
it has an operator realization. Since such a realization is needed in the physical applications,
we will construct in the next section an explicit representation of CS in terms of (generally
unbounded) operators, which act in a Hilbert space.
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3.2. Fock representation

We consider below representations of the RT algebra with involution {CS , I } with the following
structure:

(i) The representation space is a complex Hilbert space H with scalar product (·, ·).
(ii) The generators

{
aα(χ), a∗α(χ), rβ

α (χ), tβα (χ)
}

are operator-valued distributions with
common and invariant dense domain D ⊂ H, where equations (3.1)–(3.14) hold.

(iii) The involution I is realized as a conjugation with respect to (·, ·).
A Fock representation is further specified by the following condition:

(iv) There exists a vacuum state 	 ∈ D, which is annihilated by aα(χ). The vector 	 is cyclic
with respect to {a∗α(χ)} and (	,	) = 1.

There are a number of simple but quite important consequences from the assumptions
(i)–(iv). We start with

Proposition 3.1. The reflection–transmission automorphism � is realized in any Fock
representation by the identity operator.

Proof. We consider the matrix element

(ϕ, {aα(χ1) − �[aα(χ1)]}P [a∗]	) (3.21)

where ϕ is an arbitrary state in D and P is an arbitrary polynomial in a∗. Applying the identity

{aα(χ1) − �[aα(χ1)]}a∗β(χ2) = a∗γ (χ2)Sβδ
αγ (χ1, χ2){aδ(χ1) − �[aδ(χ1)]} (3.22)

which follows after some algebra from the exchange relations (3.3), (3.8) and (3.10), we can
shift the curly bracket in (3.21) to the vacuum and deduce from (iv) that

(ϕ, {aα(χ) − �[aα(χ)]}P [a∗]	) = 0. (3.23)

Taking the complex conjugate of (3.23), we obtain

(P [a∗]	, {a∗α(χ) − �[a∗α(χ)]}ϕ) = 0. (3.24)

Finally, using the cyclicity of 	, we conclude that

a∗α(χ) = �[a∗α(χ)] = a∗β(χ)tαβ (χ) + a∗β(−χ)rα
β (−χ) (3.25)

holds on D. Analogously, we derive

aα(χ) = �[aα(χ)] = tβα (χ)aβ(χ) + rβ
α (χ)aβ(−χ). (3.26)

Note that the reflection–transmission identities (3.25), (3.26) generalize the δ-impurity
relations (2.17), (2.18). �

In what follows we show that any RT algebra CS admits in general a whole familyF(CS) of
Fock representations, which can be parametrized by means of the vacuum expectation values

Rβ
α(χ) = (

	, rβ
α (χ)	

)
T β

α (χ) = (
	, tβα (χ)	

)
(3.27)

called in what follows transmission and reflection matrices. Their basic properties are collected
in

Proposition 3.2. In each Fock representation of {CS , I },
(a) T (χ) and R(χ) satisfy the Hermitian analyticity conditions

R†(χ) = R(−χ) (3.28)
T †(χ) = T (χ); (3.29)
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(b) the vacuum state 	 is unique (up to a phase factor) and satisfies

rβ
α (χ)	 = Rβ

α(χ)	 tβα (χ)	 = T β
α (χ)	; (3.30)

(c) T (χ) and R(χ) obey the consistency relations

S12(χ1, χ2)R2(χ1)S12(χ2,−χ1)R2(χ2) = R2(χ2)S12(χ1,−χ2)R2(χ1)S12(−χ2,−χ1)

(3.31)

S12(χ1, χ2)T2(χ1)S12(χ2, χ1)T2(χ2) = T2(χ2)S12(χ1, χ2)T2(χ1)S12(χ2, χ1) (3.32)

S12(χ1, χ2)T2(χ1)S12(χ2, χ1)R2(χ2)=R2(χ2)S12(χ1,−χ2)T2(χ1)S12(−χ2, χ1) (3.33)

and unitarity conditions

T (χ)T (χ) + R(χ)R(−χ) = I (3.34)

T (χ)R(χ) + R(χ)T (−χ) = 0. (3.35)

Proof. The statement (a) is a direct consequence of (3.15) and point (iii) above. Concerning
(b), the argument implying the uniqueness of the vacuum is standard (see, e.g., [26]). The
identities in (3.30) can be deduced from([

rβ
α (χ) − Rβ

α(χ)
]
	,P [a∗]	

) = 0 (3.36)

and ([
tβα (χ) − T β

α (χ)
]
	,P [a∗]	

) = 0 (3.37)

respectively, P being an arbitrary polynomial. For proving (3.36) and (3.37), one can shift
the polynomial to the first factor by Hermitian conjugation and afterwards use the exchange
relations (3.7) and (3.9) and equation (3.27). Finally, (c) can be verified by taking the vacuum
expectation values of (3.4)–(3.6) and (3.13), (3.14) and using (3.30). This concludes the
argument. �

We thus recover at the level of Fock representation the well-known boundary Yang–Baxter
equation (3.31). A novel feature is the presence of transmission (3.32) and transmission–
reflection (3.33) Yang–Baxter equations. Using (3.11), equation (3.33) can be equivalently
rewritten in the form

S12(χ1, χ2)R2(χ1)S12(χ2,−χ1)T2(χ2) = T2(χ2)S12(χ1, χ2)R2(χ1)S12(χ2,−χ1). (3.38)

Let us now elaborate a bit more on the relation between R and T . Because of (3.28),
(3.29), T (χ)T (χ) and R(χ)R(−χ) are non-negative Hermitian matrices which, according to
(3.34), are simultaneously diagonalizable. The corresponding eigenvalues satisfy

λi(χ) + µi(χ) = 1 λi(χ) � 0 µi(χ) � 0 i = 1, . . . , N. (3.39)

Solving equation (3.34) for T , one finds

T (χ) = τ(χ)
√

I − R(χ)R(−χ) = τ(χ)

∞∑
n=0

αn[R(χ)R(−χ)]n (3.40)

where τ(χ) is some unknown function and the coefficients αn are determined by
√

1 − x =∑∞
n=0 αnx

n. Conditions (3.39) ensure that the series is convergent and imposing (3.29), (3.34)
and (3.35) on (3.40), one obtains

τ̄ (χ) = τ(χ) τ(χ)2 = 1 τ(−χ) = −τ(χ). (3.41)
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The series representation (3.40) of the matrix T allows us to infer the following remarkable
property.

Proposition 3.3. For any solution R of the boundary Yang–Baxter equation (3.31), T defined
by (3.40) satisfies (3.32), (3.33).

Proof. The statement can be proved in two steps. The first one is to show that the matrix
TR(χ) = R(χ)R(−χ) obeys (3.32) and (3.33), which is done by repeated use of (3.31). The
second step is based on the identities

S12(χ1, χ2)[T2(χ1)]
mS12(χ2, χ1)[T2(χ2)]

n = [T2(χ2)]
nS12(χ1, χ2)[T2(χ1)]

mS12(χ2, χ1)

(3.42)

S12(χ1, χ2)[T2(χ1)]
nS12(χ2, χ1)R2(χ2) = R2(χ2)S12(χ1,−χ2)[T2(χ1)]

nS12(−χ2, χ1)

(3.43)

which hold for any integers m, n � 1 and are the consequence of a recurrent application of
(3.32), (3.33). �

It is worth mentioning that the above argument makes no use of the values of coefficients αn in
(3.40) and the conclusion of proposition 3.3 remains valid for any convergent series in powers
of R(χ)R(−χ).

Summarizing, we have shown that the transmission and transmission–reflection Yang–
Baxter equations (3.32) and (3.33) are a consequence of Hermitian analyticity (3.28), (3.29),
unitarity (3.11), (3.34), (3.35) and the boundary Yang–Baxter equation (3.31).

We turn now to the Fock representations of CS . Our goal will be to demonstrate that
each doublet {R, T }, satisfying (3.28), (3.29), (3.31), (3.34) and (3.35), fully determines a
Fock representation FR,T (CS) of CS . For this purpose we shall construct FR,T (CS) explicitly,
extending the projection operator technique developed in [14, 27, 28] for the ZF and boundary
algebras, which are particular cases of CS . The first step is to introduce the n-particle subspace
H(n) of FR,T (CS). For this purpose we consider

L =
⊕

α

L2(R) (3.44)

equipped with the standard scalar product

(ϕ, ψ) =
∫ ∞

−∞
dχϕ†α(χ)ψα(χ) =

∑
α

∫ ∞

−∞
dχϕ̄α(χ)ψα(χ). (3.45)

The n-particle space H(n) we are looking for is a subspace of the n-fold tensor power L⊗n,
characterized by a suitable projection operator P (n). In order to construct P (n), we proceed
as follows. Observing that any element ϕ ∈ L⊗n can be viewed as a column whose entries
are ϕα1...αn

(χ1, . . . , χn), we define the operators
{
σ

(n)
i , τ (n) : i = 1, . . . , n − 1

}
acting on L⊗n

according to

[
σ

(n)
i ϕ

]
α1...αn

(χ1, . . . , χi, χi+1, . . . , χn)

= [Sii+1(χi, χi+1)]
β1...βn

α1...αn
ϕβ1...βn

(χ1, . . . , χi+1, χi, . . . , χn) n � 2 (3.46)

[τ (n)ϕ]α1...αn
(χ1, . . . , χn) = T βn

αn
(χn)ϕα1...αn−1βn

(χ1, . . . , χn−1, χn)

+Rβn

αn
(χn)ϕα1...αn−1βn

(χ1, . . . , χn−1,−χn) n � 1 (3.47)
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where

[Sij (χi, χj )]
β1...βn

α1...αn
= δβ1

α1
· · · δ̂βi

αi
· · · δ̂βj

αj
· · · δβn

αn
Sβiβj

αiαj
(χi, χj ). (3.48)

In order to implement equations (3.46), (3.47) on the whole L⊗n, we assume at this stage that
the matrix elements Sβ1β2

α1α2
(χ1, χ2), T β

α (χ) and Rβ
α(χ) are bounded functions. Now, one can

prove

Proposition 3.4. Let Wn be the Weyl group associated with the root systems of the classical
Lie algebra Bn and let {σi, τ : i = 1, . . . , n − 1} be the generators of Wn. The mapping

φn : σi �→ σ
(n)
i φn : τ �→ τ (n) (3.49)

defines a representation of Wn in L⊗n. Moreover,

P (n) ≡ 1

2nn!

∑
ν∈Wn

φn(ν) (3.50)

is an orthogonal projection operator in L⊗n.

Proof. One has by construction

σ
(n)
i σ

(n)
j = σ

(n)
j σ

(n)
i |i − j | � 2 (3.51)

σ
(n)
i τ = τσ

(n)
i 1 � i < n − 2. (3.52)

Using the Yang–Baxter equations (3.12), (3.31)–(3.33), (3.38), one shows that

σ
(n)
i σ

(n)
i+1σ

(n)
i = σ

(n)
i+1σ

(n)
i σ

(n)
i+1 (3.53)

σ
(n)
n−1τσ

(n)
n−1τ = τσ

(n)
n−1τσ

(n)
n−1. (3.54)

The unitarity conditions (3.11) and (3.34), (3.35) imply[
σ

(n)
i

]2 = τ 2 = 1. (3.55)

Consequently, φn is a representation of Wn in L⊗n and P (n) is a projection operator. Finally,
from Hermitian analyticity (3.17), (3.28), (3.29), one infers that

{
σ

(n)
i , τ (n) : i = 1, . . . , n−1

}
are Hermitian operators. Therefore, P (n) is orthogonal. �

We have at this stage enough background to construct the Fock representation FR,T (CS).
The n-particle space is defined by

H(0) = C H(n) = P (n)L⊗n n � 1 (3.56)

the total Fock space being

H =
∞⊕

n=0

H(n). (3.57)

The finite particle space D is the (complex) linear space of sequences ϕ = (ϕ(0), ϕ(1), . . . ,

ϕ(n), . . .) with ϕ(n) ∈ H(n) and ϕ(n) = 0 for n large enough. D is dense in FR,T (CS).
The vacuum state is 	 = (1, 0, . . . , 0, . . .) and belongs to D. The smeared bulk operators
{a(f ), a∗(f ) : f ∈ L} act on D as follows:

a(f )	 = 0 (3.58)

[a(f )ϕ](n)
α1...αn

(χ1, . . . , χn) =
√

n + 1
∫ ∞

−∞
dχf †α0(χ)ϕ(n+1)

α0α1...αn
(χ, χ1, . . . , χn) (3.59)
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[a∗(f )ϕ](n)
α1...αn

(χ1, . . . , χn) = √
n[P (n)f ⊗ ϕ(n−1)]α1...αn

(χ1, . . . , χn). (3.60)

In general, a(f ) and a∗(f ) are unbounded operators on D. For any ϕ(n) ∈ H(n) one has
however the estimate

‖a�(f )ϕ(n)‖ �
√

n‖f ‖‖ϕ(n)‖ (3.61)

where a�(f ) stands for a(f ) or a∗(f ). Therefore a(f ) and a∗(f ) are bounded on each H(n).
We now turn to the defect generators, defining tβα (χ) and rβ

α (χ) as the following
multiplicative operators on D,

[
rβ
α (χ)ϕ

](n)

γ1...γn
(χ1, . . . , χn) = [S01(χ, χ1)S12(χ, χ2) . . .S(n−1)n(χ, χn)Rn(χ)

· · ·S(n−1)n(χn,−χ) · · ·S12(χ2,−χ)S01(χ1,−χ)]βδ1...δn

αγ1...γn
ϕ

(n)
δ1...δn

(χ1, . . . , χn)

(3.62)

[
tβα (χ)ϕ

](n)

γ1...γn
(χ1, . . . , χn) = [S01(χ, χ1)S12(χ, χ2) · · ·S(n−1)n(χ, χn)Tn(χ)

· · ·S(n−1)n(χn, χ) · · ·S12(χ2, χ)S01(χ1, χ)]βδ1...δn

αγ1...γn
ϕ

(n)
δ1...δn

(χ1, . . . , χn) (3.63)

combined with (3.30). As expected, the defect operators preserve the bulk particle number.
For deriving the commutation properties of (3.59), (3.60), (3.62), (3.63) on D, it is

convenient to introduce the operator-valued distributions aα(χ) and a∗α(χ) defined by

a(f ) =
∫ ∞

−∞
dχf †α(χ)aα(χ) a∗(f ) =

∫ ∞

−∞
dχfα(χ)a∗α(χ). (3.64)

A straightforward computation allows us to prove now

Proposition 3.5. The operator-valued distributions {aα(χ), a∗α(χ)} and
{
rβ
α (χ), tβα (χ)

}
satisfy the exchange relations (3.1)–(3.10) and the constraints (3.13) and (3.14) on D. The
involution I is realized as Hermitian conjugation with respect to the scalar product (3.45).

This result completes the construction of the Fock representation FR,T (CS), which is the
basic tool in the physical applications discussed in this paper. Fixing CS , FR,T (CS) is indeed
fully determined by {R, T } satisfying equations (3.28), (3.29), (3.31)–(3.35). Besides some
concrete examples, little is known in general about the solution set of the latter. There exists,
however, one particular case of physical importance, which is described in

Proposition 3.6. Suppose that R obeys

S12(χ1, χ2)R2(χ1) = R1(χ1)S12(−χ1, χ2). (3.65)

Then R satisfies the boundary Yang–Baxter equation (3.31). Moreover, T obeys

S12(χ1, χ2)T2(χ1) = T1(χ1)S12(χ1, χ2) (3.66)

and

rβ
α (χ)ϕ = Rβ

α(χ)ϕ tβα (χ)ϕ = T β
α (χ)ϕ (3.67)

hold for all ϕ ∈ D.

Proof. Equation (3.31) follows directly from (3.11) and (3.65). Identity (3.66) is a consequence
of (3.65) and the series representation (3.40). Equations (3.67) follow from (3.63), (3.62) and
(3.65), (3.66). Note also that (2.17), (2.18) are recovered from (3.25), (3.26) and (3.67). �
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Condition (3.65) sort of linearizes equations (3.31)–(3.33) and defines a special subset
of representations F̃(CS) ⊂ F(CS), whose defect operators are proportional to the identity in
H. All Fock representations of the algebras CB and CF , introduced above in the context of
δ-impurities, belong to this subset because (3.65) is identically satisfied for the bosonic and
fermionic exchange factors

Sβ1β2
α1α2

(χ1, χ2) = ±δβ2
α1

δβ1
α2

. (3.68)

Let us observe in this respect that T and R, given by (2.4), (2.16), obey Hermitian analyticity
(3.28), (3.29) and unitarity (3.34), (3.35).

4. Factorized scattering with impurities

We develop in this section a general approach to factorized scattering in (1 + 1)-dimensional
integrable models with impurity.

4.1. Kinematics

Let E and p be the energy and momentum of any asymptotic bulk particle. Usually E and p are
not independent and obey some dispersion relation. The latter can be implemented expressing
both E and p in terms of one parameter χ ∈ R, namely

E = E(χ) p = p(χ). (4.1)

It is instructive to keep in mind the following two examples:

• Relativistic dispersion relation

E(χ) = m cosh(χ) p(χ) = m sinh(χ) (4.2)

where m > 0 is the mass and χ the rapidity.
• Non-relativistic dispersion relation

E(χ) = mχ2

2
+ U p(χ) = mχ (4.3)

χ being the velocity and U some constant.

Note that both of these relations satisfy

ε(p) = ε(χ) (4.4)

ε being the sign function. We also observe that a Lorentz boost in (4.2) and a Galilean
transformation in (4.3) are both realized by a translation χ �→ χ + α.

In what follows we adopt a dispersion relation (4.1), which satisfies (4.4) but is otherwise
generic and parametrizes any asymptotic bulk particle by χ ∈ R and its isotopic index
i = 1, . . . , N . Assuming that the impurity, localized at x = 0, has no internal degrees of
freedom, and taking into account (4.4), the fundamental building blocks of factorized scattering
are as follows:

(i) The two-body bulk scattering matrix S
j1j2
i1i2

(χ1, χ2) defined on R × R.

(ii) The right and left reflection matrices R
+j

i (χ) and R
−j

i (χ), defined on R+ and R−
respectively and describing the reflection of a particle from the impurity.

(iii) The left and right transmission matrices T
+j

i (χ) and T
−j

i (χ), defined on R+ and R−
respectively and describing the transmission of a particle by the impurity.
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We emphasize that S is allowed to depend on χ1 and χ2 separately [25], generalizing the
previous attempts [15, 16, 19], where S is assumed to depend on χ1 − χ2 only. The physical
meaning of this generalization is quite simple: with the dispersion relation (4.2) for instance,
it means that our approach covers both Lorentz-invariant and non-invariant bulk scattering
matrices. We will argue later on in this section that such a unified treatment provides some
advantages when impurities are present.

One should also keep in mind that our transmission and reflection matrices are not defined
on the whole R, but only for values of χ in the relative physical kinematic domains specified
in (ii) and (iii). This information must be sufficient for reconstructing the total scattering
operator S and we demonstrate below that this is indeed the case.

The data {S,R±, T ±} are subject to a number of constraints, ensuring physical unitarity of
the scattering operator S and factorization of the transition amplitudes. Let us first concentrate
on unitarity. Since integrability implies particle number conservation, the restriction S(1) of
S to the one-particle subspace is a well-defined operator. One has (see also equation (4.49)
below)

S(1)(χ) =
(

R+(χ) T +(χ)

T −(−χ) R−(−χ)

)
χ > 0. (4.5)

Equation (4.5) reflects an essential difference with respect to any Lorentz-invariant theory,
where S(1) = I is mandatory [23]. Unitarity

S(1)(χ)[S(1)]†(χ) = [S(1)]†(χ)S(1)(χ) = I (4.6)

implies

R±(±χ)[R±]†(±χ) + T ±(±χ)[T ±]†(±χ) = I (4.7)

[R±]†(±χ)R±(±χ) + [T ∓]†(∓χ)T ∓(∓χ) = I (4.8)

R±(±χ)[T ∓]†(∓χ) + T ±(±χ)[R∓]†(∓χ) = 0 (4.9)

[R±]†(±χ)T ±(±χ) + [T ∓]†(∓χ)R∓(∓χ) = 0 (4.10)

where χ > 0. We stress that (4.7)–(4.10) are necessary and sufficient conditions: any violation
of (4.7)–(4.10) breaks down the unitarity of S(1) and, consequently, of S. It is worth mentioning
that in our previous paper [21]

R±(±χ)R∓(∓χ) + T ±(±χ)T ±(±χ) = I (4.11)

R±(±χ)T ∓(∓χ) + T ±(±χ)R±(±χ) = 0 (4.12)

[R±]†(±χ) = R∓(∓χ) [T ±]†(±χ) = T ±(±χ) (4.13)

were imposed instead of (4.7)–(4.10). Conditions (4.11)–(4.13) are stronger than (4.7)–
(4.10) and provide some technical advantage [21] in dealing with the factorization constraints
obtained below. One can easily see however that δ-type defects (see, e.g., equation (2.4))
violate5 (4.11)–(4.13). For this reason we avoid the use of (4.11)–(4.13) in the present paper,
keeping (4.7)–(4.10) which are respected by the δ-impurities described in section 2. We
conclude the issue recalling that bulk scattering unitarity is controlled by

S12(χ1, χ2)S12(χ2, χ1) = I S
†
12(χ1, χ2) = S12(χ2, χ1). (4.14)

For analysing the constraints following from factorization, it is convenient to display
the data {S,R±, T ±} graphically. This is done in figure 1, where the time is flowing along
5 Correspondence with O A Castro-Alvaredo and A Fring on this point is kindly acknowledged.
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Figure 1. The two-body processes.
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Figure 2. Pure reflection.

the vertical direction, single lines denote the particle world lines and the double line is the
impurity. Requiring factorization of all possible three-body processes leads to a series of
relations among S, T ± and R±. As is well known [2], the scattering of three particles implies
the quantum Yang–Baxter equation

S12(χ1, χ2)S23(χ1, χ3)S12(χ2, χ3) = S23(χ2, χ3)S12(χ1, χ3)S23(χ1, χ2) (4.15)

whose graphic representation is familiar and is omitted for conciseness.
The consistency conditions stemming from the scattering of two particles between

themselves and the impurity, can be organized in three groups.
(a) Pure reflection:

S12(χ1, χ2)R
+
2 (χ1)S12(χ2,−χ1)R

+
2 (χ2) = R+

2 (χ2)S12(χ1,−χ2)R
+
2 (χ1)S12(−χ2,−χ1)

(4.16)

S12(χ1, χ2)R
−
1 (χ2)S12(−χ2, χ1)R

−
1 (χ1) = R−

1 (χ1)S12(−χ1, χ2)R
−
1 (χ2)S12(−χ2,−χ1).

(4.17)

Equations (4.16) and (4.17) concern the reflection on R+ and R− respectively. Using the rules
in figure 1 and moving back in time, one gets the graphic representation of (4.16) shown in
figure 2.

The picture associated with (4.17) is obtained from figure 2 by reflection with respect to
the impurity world line.

(b) Pure transmission:

T +
1 (χ1)S12(χ1, χ2)T

−
1 (χ2) = T −

2 (χ2)S12(χ1, χ2)T
+

2 (χ1) (4.18)

S12(χ1, χ2)T
−

1 (χ2)T
−

2 (χ1) = T −
1 (χ1)T

−
2 (χ2)S12(χ1, χ2) (4.19)
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==
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Figure 3. Pure transmission.
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Figure 4. Mixed relations.

S12(χ1, χ2)T
+

1 (χ2)T
+

2 (χ1) = T +
1 (χ1)T

+
2 (χ2)S12(χ1, χ2). (4.20)

Equations (4.18) and (4.19) are represented in figures 3(a) and (b) respectively.
As before, the picture corresponding to equation (4.20) is obtained from figure 3(b) by

reflection.
(c) Mixed relations:

R+
1 (χ1)T

−
2 (χ2) = T −

2 (χ2)S12(χ1, χ2)R
+
2 (χ1)S12(χ2,−χ1) (4.21)

T +
1 (χ1)R

−
2 (χ2) = T +

1 (χ1)S12(χ1, χ2)R
−
1 (χ2)S12(−χ2, χ1) (4.22)

R+
1 (χ1)T

+
2 (χ2) = S12(χ1, χ2)R

+
2 (χ1)S12(χ2,−χ1)T

+
2 (χ2) (4.23)

T −
1 (χ1)R

−
2 (χ2) = S12(χ1, χ2)R

−
1 (χ2)S12(−χ2, χ1)T

−
1 (χ1) (4.24)

R+
1 (χ1)T

−
2 (χ2)S12(−χ1, χ2) = T −

2 (χ2)S12(χ1, χ2)R
+
2 (χ1) (4.25)

T +
1 (χ1)R

−
2 (χ2)S12(χ1,−χ2) = T +

1 (χ1)S12(χ1, χ2)R
−
1 (χ2) (4.26)

R+
2 (χ1)S12(χ2,−χ1)T

+
2 (χ2) = S12(χ2, χ1)R

+
1 (χ1)T

+
2 (χ2) (4.27)

R−
1 (χ2)S12(−χ2, χ1)T

−
1 (χ1) = S12(χ2, χ1)T

−
1 (χ1)R

−
2 (χ2). (4.28)

Equations (4.21) and (4.25) are shown in figures 4(a) and (b) respectively, whereas
equations (4.23) and (4.27) are drawn in figures 4(c) and (d). The pictures related to the
remaining four mixed equations are obtained from figure 4 by reflection, which completes the
description of all three-body processes.

Summarizing, the scattering data {S,R±, T ±} are required to satisfy two sets of
conditions: unitarity constraints (4.7)–(4.10), (4.14) and factorization constraints (4.15)–
(4.28). The general solution of this long list of matrix equations is currently unknown.



Reflection–transmission algebras 10425

In order to simplify the problem, we consider invertible T ±. From equations (4.25) and (4.28)
one then infers that

S12(χ1, χ2)R
±
2 (χ1) = R±

1 (χ1)S12(−χ1, χ2) ∀χ2 ∈ R (4.29)

which implies the validity of all (4.16), (4.17), (4.21)–(4.28). Therefore, assuming that T ±

are invertible, one is left with equations (4.7)–(4.10), (4.14), (4.15), (4.18)–(4.20) and (4.29),
which simplifies a little the problem of deriving explicit solutions {S,R±, T ±}. At this stage,
it might be useful to give some examples, starting with the gl(N)-invariant S-matrix

S12(χ1, χ2) = 1

s(χ1) − s(χ2) + ig
{[s(χ1) − s(χ2)] P12 + igI ⊗ I} (4.30)

where P12 is the standard flip operator, g ∈ R, and s(χ) is any real-valued even function. For
R± and T ± one derives

R±(χ) = [cos p(±χ)] exp[iq±(±χ)]I (4.31)

T ±(χ) = ±[sin p(±χ)] exp[iq±(±χ)]I (4.32)

p(χ) and q±(χ) being arbitrary real-valued functions on R+. In this example, both reflection
and transmission preserve the isotopic type and all isotopic types have the same reflection and
transmission amplitudes.

A more complicated example is provided by the family of S-matrices

S
j1j2
i1i2

(χ1, χ2) = exp
[
isi1i2(χ1, χ2)

]
δ

j2
i1

δ
j1
i2

(4.33)

where si1i2(χ1, χ2) are real-valued functions obeying

si1i2(χ1, χ2) = −si2i1(χ2, χ1) si1i2(χ1, χ2) = si1i2(χ1,−χ2). (4.34)

When si1i2(χ1, χ2) satisfy (4.34) but are otherwise generic, one finds

[R±]ji (χ) = [cos pi(±χ)] exp
[
iq±

i (±χ)
]
δ

j

i (4.35)

[T ±]ji (χ) = ±[sin pi(±χ)] exp
[
iq±

i (±χ)
]
δ

j

i (4.36)

where pi(χ) and q±
i (χ) are real-valued functions on R+. Also here the impurity interaction

preserves the isotopic type, but the individual reflection and transmission amplitudes may be
different. Finally, if some of the entries si1i2(χ1, χ2) coincide, non-diagonal elements in R±

and T ± are allowed [21] and the isotopic type is not preserved.

4.2. Scattering operator and transition amplitudes

We have so far described in great detail the main features of the physical data {S,R±, T ±}
for factorized scattering with impurity. The next step is to identify the RT algebra CS and
its Fock representation FR,T (CS) producing the total scattering operator S and the transition
amplitudes, corresponding to {S,R±, T ±}. For this purpose we set

S(χ1, χ2) =




S(χ1, χ2) 0 0 0
0 0 S(χ1, χ2) 0
0 S(χ1, χ2) 0 0
0 0 0 S(χ1, χ2)


 (4.37)

R(χ) = θ(χ)

(
R+(χ) 0

0 [R−]†(−χ)

)
+ θ(−χ)

(
[R+]†(−χ) 0

0 R−(χ)

)
(4.38)
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T (χ) = θ(χ)

(
0 T +(χ)

[T +]†(χ) 0

)
+ θ(−χ)

(
0 [T −]†(χ)

T −(χ) 0

)
(4.39)

S,R and T defined above are admissible because of

Proposition 4.1. The constraints (4.7)–(4.10), (4.14), (4.15) and (4.29) on the data
{S,R±, T ±} imply the validity of (3.11), (3.12), (3.17), (3.28), (3.29), (3.34), (3.35), (3.65)
for {S,R, T }.
Proof. We first observe that the condition of Hermitian analyticity (3.28), (3.29) for T
and R is satisfied by construction. The remaining conditions can be checked by direct
computation. �

Thus, equation (4.37) determines the algebra CS , whereas (4.38), (4.39) fix the
representation FR,T (CS) in terms of {R±, T ±}. We stress that equation (4.29) implies (3.65).
Therefore, according to proposition 3.6, FR,T (CS) ∈ F̃(CS). In other words, the factorization
conditions derived in section 4.1 select representations from the subclass F̃(CS) ⊂ F(CS).

The asymptotic states in FR,T (CS) are defined in complete analogy with the δ-impurity
case, discussed in section 2. The presence of internal degrees of freedom can be dealt with in a
straightforward way. ‘In’ states are created from the vacuum by {a∗(−,i)(g) : supp g ⊂ R+} and
{a∗(+,i)(g) : supp g ⊂ R−}. The ‘out’ states are generated instead by {a∗(−,j)(h) : supp h ⊂
R−} and {a∗(+,j)(h) : supp h ⊂ R+}. By means of (3.2), one can also order the creation
operators according to the values of the spectral parameter, using the relation ≺ introduced in
section 2. We thus define the ‘incoming’ states by

|g1, i1; . . . ; gm, im〉in = a∗(ξ1,i1)(g1) · · · a∗(ξm,im)(gm)	 (4.40)

where

g1 ≺ · · · ≺ gm ξi =
{

+ supp gi ⊂ R−
− supp gi ⊂ R+.

(4.41)

The ‘outgoing’ states are given by
out〈h1, j1; . . . ;hn, jn| = a∗(η1,j1)(h1) · · · a∗(ηn,jn)(hn)	 (4.42)

with

hn ≺ · · · ≺ h1 ηj =
{

+ supp hj ⊂ R+

− supp hj ⊂ R−.
(4.43)

The asymptotic spaces Hin and Hout are generated by finite linear combinations of vectors
of the types (4.40) and (4.42) respectively. Each of these spaces is dense in H. The total
scattering operator S : Hout → Hin is defined by

S : a∗(η1,j1)(h1) · · · a∗(ηn,jn)(hn)	 �−→ a∗(η̃1,j1)(h̃1) · · · a∗(η̃n,jn)(h̃n)	 (4.44)

where

h̃k(χ) = hk(−χ) η̃k = −ηk. (4.45)

Using the non-overlapping conditions (4.41), (4.43), it is not difficult to check that

(S�out, S�out) = (�out,�out) ∀�out,�out ∈ Hout. (4.46)

Generalizing the argument of [14, 25], we deduce from (4.44), (4.46) that S is unitary.
A generic scattering amplitude reads

out〈h1, j1; . . . ;hn, jn|g1, i1; . . . ; gm, im〉in

= (a∗(j1,η1)(h1) · · · a∗(jn,ηn)(hn)	, a∗(i1,ξ1)(g1) · · · a∗(im,ξm)(gm)	) (4.47)
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and can be computed by means of the exchange relation (3.3) and the identities (3.30). The
Fock structure implies that (4.47) vanishes unless m = n, showing the absence of particle
production as expected from integrability. The one-particle transition amplitudes can be
deduced from the correlation function

(a∗β(χ)	, a∗α(ϕ)	) = [
δα
β + T α

β (χ)
]
δ(χ − ϕ) + Rα

β(χ)δ(χ + ϕ). (4.48)

One gets

out〈h, j |g, i〉in =




∫ ∞
0 dχh̄(χ)T +i

j (χ)g(χ) ξ = − η = +∫ ∞
0 dχh̄(−χ)T −i

j (−χ)g(−χ) ξ = + η = −∫ ∞
0 dχh̄(χ)R+i

j (χ)g(−χ) ξ = + η = +∫ ∞
0 dχh̄(−χ)R−i

j (−χ)g(χ) ξ = − η = −

(4.49)

which describe the particle–impurity interaction and precisely reproduce the one-particle
scattering matrix S(1) given by equation (4.5).

The particle–particle interaction shows up in the two-particle amplitudes, which can be
derived from the correlator

(a∗β1(χ1)a
∗β2(χ2)	, a∗α1(ϕ1)a

∗α2(ϕ2)	)

= [
δ

µ
β2

+ T µ
β2

(χ2)
]
Sα1ν

β1µ
(χ1, χ2)

[
δα2
ν + T α2

ν (χ1)
]
δ(χ1 − ϕ2)δ(χ2 − ϕ1)

+Rµ
β2

(χ2)Sα1ν
β1µ

(χ1,−χ2)
[
δα2
ν + T α2

ν (χ1)
]
δ(χ1 − ϕ2)δ(χ2 + ϕ1)

+
[
δ

µ
β2

+ T µ
β2

(χ2)
]
Sα1ν

β1µ
(χ1, χ2)Rα2

ν (χ1)δ(χ1 + ϕ2)δ(χ2 − ϕ1)

+Rµ
β2

(χ2)Sα1ν
β1µ

(χ1,−χ2)Rα2
ν (χ1)δ(χ1 + ϕ2)δ(χ2 + ϕ1)

+
[
δ

α1
β1

+ T α1
β1

(χ1)
][

δ
α2
β2

+ T α2
β2

(χ2)
]
δ(χ1 − ϕ1)δ(χ2 − ϕ2)

+
[
δ

α1
β1

+ T α1
β1

(χ1)
]
Rα2

β2
(χ2)δ(χ1 − ϕ1)δ(χ2 + ϕ2)

+Rα1
β1

(χ1)
[
δ

α2
β2

+ T α2
β2

(χ2)
]
δ(χ1 + ϕ1)δ(χ2 − ϕ2)

+Rα1
β1

(χ1)Rα2
β2

(χ2)δ(χ1 + ϕ1)δ(χ2 + ϕ2). (4.50)

Take for instance the asymptotic states

|g1, i1; g2, i2〉in ξ1 = − ξ2 = + (4.51)
out〈h1, j1;h2, j2| η1 = + η2 = +. (4.52)

The corresponding transition amplitude receives contributions only from the second and the
third terms on the right-hand side of (4.50). One finds

out〈h1, j1;h2, j2|g1, i1; g2, i2〉in =
∫ ∞

0
dχ1 dχ2h̄1(χ1)h̄2(χ2)

[
R+k

j2
(χ2)S

i1l
j1k

(χ1,−χ2)

× T +i2
l (χ1)g1(−χ2)g2(χ1) + R+i1

j1
(χ1)T

+i2
j2
(χ2)g1(−χ1)g2(χ2)

]
.

(4.53)

The associated scattering processes are displayed in figures 4(c) and (d ). All possible
kinematic domains, respecting the non-overlapping conditions (4.41), (4.43), give rise to nine
different two-particle transition amplitudes, which are reported in [21]. Due to the presence
of reflection and transmission factors, these amplitudes violate Lorentz symmetry even if S
is Lorentz invariant, i.e. depends on χ1–χ2 only. Therefore, Lorentz symmetry is necessarily
broken in the correlation functions of the associated interpolating field. The crucial point is
that the contribution of S to the interpolating field cannot be separated from that of R± and
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T ±. This feature is nicely illustrated by, e.g., (2.31) concerning the δ-impurity (S = 1). The
fact that imposing Lorentz invariance on S does not improve the spacetime symmetry content
of the interpolating fields is our basic motivation for including in the above framework also
bulk S-matrices which violate this symmetry.

Summarizing, the physical scattering data {S,R±, T ±} determine both the RT algebra
CS and its Fock representation FR,T (CS) entering the derivation of the S-matrix amplitudes.
The asymptotic states are obtained by acting with the particle creation operators on the
standard Fock vacuum 	 ∈ FR,T (CS). It is worth stressing that our scheme makes no use
of any auxiliary construction of a boundary state with prescribed reflection and transmission
properties. This essential difference with respect to all previous approaches of the subject
[11–20] represents a relevant theoretical and technical advantage of the framework based on
the RT algebra CS .

We emphasize, in conclusion, that the above scattering theory is based entirely on the
data {S,R±, T ±} for real values of the spectral parameter χ . For this reason, the results of
this work are very general and remain valid also after imposing all physical conditions (such
as crossing symmetry and certain meromorphic structure) on the continuation of {S,R±, T ±}
to the complex χ -plane.

5. Conclusions and perspectives

We developed in this paper a framework for dealing with factorized scattering from reflecting
and transmitting impurities in 1 + 1 dimensions. Our starting point was the analysis of some
exactly solvable models with δ-type impurities, which led us directly to the main tool of our
approach, the RT algebra CS . The interaction of a particle with the impurity is implemented in
CS by the reflection and transmission generators

{
rβ
α (χ)

}
and

{
tβα (χ)

}
respectively. As already

mentioned, setting tβα (χ) = 0, one gets from CS another useful algebra BS , which describes
[14] factorized scattering from a purely reflecting boundary. In this context BS applies also to
the construction of off-shell correlation functions [24, 29] and to the study of symmetries [30].
Moreover, setting rβ

α (χ) = tβα (χ) = 0, one obtains the celebrated ZF algebra. Therefore, CS
indeed represents a universal structure for dealing with integrable models in 1 + 1 dimensions.

The Fock representations of CS also exhibit remarkable features. The operators
{
rβ
α (χ),

tβα (χ)
}

condense in the vacuum 	 ∈ FR,T (CS). The relative condensates
{
Rβ

α(χ), T β
α (χ)

}
are directly related to the physical reflection and transmission amplitudes. There is no need
for special boundary or reflection–transmission states in our scheme. The use of the standard
Fock vacuum 	 ∈ FR,T (CS) for deriving the asymptotic states significantly simplifies the
construction.

We established a complete set of factorization conditions for scattering with impurities
in 1 + 1 dimensions, showing that they admit solutions with non-trivial bulk scattering if the
requirement of Lorentz (Galilean) invariance on the bulk S-matrix is relaxed. This feature,
which is not surprising in the presence of defects, represents one possible way out from the
no-go theorem of [19].

The concept of RT algebra, introduced in this paper, opens a variety of new directions
for further research. On the mathematical side, the interplay between CS , BS and ZF algebras
deserves a more detailed analysis. A link between BS and the ZF algebra has been explored in
[31]. From the physical point of view, CS appears to be the natural candidate for replacing the
ZF algebra in the form factor program for integrable models with impurities. The construction
of off-shell local fields in this context is a challenging open problem. We strongly believe
that besides integrable systems, RT algebras apply also to (1 + 1)-dimensional conformal field
theory with permeable walls, which partly transmit and partly reflect the incident waves. Such
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theories [32, 33] have obvious relevance to critical phenomena and have recently acquired
some importance in the theory of strings and branes. Finally, for applications to impurity
problems in condensed-matter physics, one needs finite temperature representations of the RT
algebras, which requires the construction of Kubo–Martin–Schwinger states over CS . We are
currently investigating some of these issues.
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